OITE Hand Review Orthopaedic Hand Conference

Bernard F. Hearon, M.D. October 17, 2017

Flexor Tendon Injuries

Anatomy

Blood supply

- · Diffusion most important within sheath
- · Direct vascular supply outside sheath

Pulley system prevents bowstringing

- · A2 and A4 most important in fingers
- · Oblique pulley most important in thumb

Verdan Injury Zones

- 1 Distal to FDS insertion
- II FDS insertion to distal palmar crease
- III- Distal palmar crease to carpal tunnel
- IV Carpal tunnel
- V Wrist proximal to carpal tunnel, forearm

Treatment

Nonoperative

- Partial lacerations < 60% tendon width Operative
- Acute (< 3 wks) lacerations > 60% width
- Chronic finger tendon reconstruction
- · Chronic thumb ring FDS to FPL transfer

Technique

Core suture strands

- # crossing repair determines strength
- · 4-6 strands adequate for early active ROM
- · Ideal purchase 10 mm from cut edge

Epitendinous suture

- · Improves strength 20%, tendon gliding
- · Decreases gap formation
- · Simple running is recommended

WALANT Technique - Intraoperative Active Motion

Intraoperative assessment of gap formation

Allows debulking bunched repairs, venting of A2 and A4 pulleys

Allows tendon repair within flexor sheath

Facilitates postoperative early active motion

Postoperative Rehabilitation

Early active ROM - mod force, high excursion Early passive motion protocols

- Duran low force, low excursion
- · Kleinert low force, low excursion
- Mayo synergistic low force, high excursion Immobilization - children, noncompliant pts

Complications

Tendon adhesions - most common

Re-rupture - rate 15-25%

- If < 1 cm scar, then resect, revision repair
- If > 1 cm scar, then tendon graft

Joint contracture - as high as 17%

Fingertip Amputions

Fingertip Amputations

Treatment goals

- · Sensate, durable tip coverage
- · Adequate bone to support nail growth

Factors determining treatment

- · Amputation characteristics
- · Radiographs showing bone involvement

Treatment Options

Nonoperative - secondary intention

- No bone or tendon involved, < 2 cm skin loss
- · Children with exposed bone

Operative treatment

- · Revision amputation keeping nail bed support
- FTSG hypothenar, > 2 cm skin loss
- Flap reconstruction

V-Y Advancement Flap

Indicated for transverse or dorsal oblique amputations
Flap carried to new position by sliding technique

Thenar Flap

Volar oblique defect Index or middle fingers Age < 30 years Complicated by PIPJ stiffness

Cross Finger Flap

Volar oblique defect Age > 30 years Less digital stiffness

Moberg Flap

Volar thumb defect < 2 cm Advancement flap < 1 cm Possible IPJ contracture

Krukenberg Procedure

Convert radius, ulna into claw-like pincer Radius is mobile ray (BR, FCR, ECRL, ECRB) Ulna is fixed ray (FCU, ECU, EDQ) Bilateral upper extremity amputee, blind

Replantations

Indications for Replantation

Primary indications

- Thumb, any level
- · Multiple digits
- · Through palm, wrist, proximal to wrist
- · All part in children

Relative indications

- Single digits distal to FDS (zone I)
- · Some ring avulsions
- · Through or proximal to elbow

Contraindications to Replantation

Primary contraindications

- · Severe vascular disorder
- Mangled limb, crush injury
- · Segmental amputation
- Prolonged ischemia > 6 hrs, large muscle content

Relative contraindications

- Single digits proximal to FDS (zone II)
- Medically unstable, psychiatric, tissue contamination
- Prolonged ischemic > 12 hrs, no muscle content

Sequence of Replantation

Vascular shunt if large muscle content

Bone fixation +/- shortening (after debridement)

Extensor tendon repair

Arterial repair (after bone if ischemia > 4 hrs)

Venous anastomoses

Flexor tendon repair

Nerve repair

Skin +/- fasciotomy

Scaphoid Fractures

Scaphoid Fractures

Most frequently fractured carpal bone

Incidence - 15% of acute wrist injuries

Location - 65% waist, 25% proximal, 10% distal

Mechanism - axial load, wrist HE, RD

Prognosis - AVN prox third 33%, prox fifth 100%

Scaphoid Vascularity

Major blood supply

- · Dorsal carpal branch of radial artery
- Enters dorsal ridge, prox 80%, retrograde flow Minor blood supply
- Superficial palmar arch of volar radial artery
- · Enters distal tubercle, supplies distal 20%

Scaphoid Imaging

Radiographs - scaphoid view - 30° DF, 20° UD

Bone scan - occult fx at 72 hrs - sp 98%, sen 100%

MRI - most sensitive for occult fx at 24 hrs, assess proximal pole vascularity on T1 sequence CT scan - best for location fx, size fragments, collapse, progression to nonunion

Nonoperative Treatment

Thumb spica cast - long-arm vs short-arm

Duration of immobilization

- 3 months distal waist
- · 4 months mid-waist
- · 5 months proximal third

Pulsed electromagnetic field may help

< 1 mm displacement - 90% union rate

Operative Treatment

Unstable fractures

- · Proximal pole
- Displacement > 1 mm
- · 15° humpback deformity
- · Comminuted or oblique fractures

Non-displaced waist fractures

- · Decrease time to union
- · Faster return to work

Operative Technique - ORIF vs Percutaneous Fixation

Dorsal approach

- · Indicated for proximal pole fractures
- · Preserve dorsal ridge blood supply

Volar approach

- · Indicated for waist & distal pole fractures
- Exposes entire scaphoid

Scaphoid Nonunion w/o SNAC Wrist

Minimal deformity - inlay (Russe) BG - 92% union

Humpback - interposition (Fisk) BG - 72-95%

Proximal pole, AVN - 1-2 ICSRA vascularized BG

Prox pole, AVN - MFC vascularized BG using descending genicular artery pedicle (from SFA)

Carpal Tunnel Syndrome

Carpal Tunnel Syndrome - Risk Factors

Gender (3:1, women: men)

Obesity

Hypothyroidism

Diabetes (14-30%)

Pregnancy (50%)

Renal disease

Inflammatory arthritis

Mucopolysaccharidoses

Advanced age (> 50 yrs)

Genetic factors

Carpal Tunnel Syndrome - Causation

Work causation is controversial - dental hygienists, beef packers, assembly line workers

Positional, mechanical & repetitive stress

Hand-held vibrating tools are causative

Keyboarding is not causative

Athletics - cycling, tennis, throwing

Space occupying lesions (e.g., gout)

Carpal Tunnel Syndrome - Clinical Diagnosis

Median paresthesia aggravated by grasping

Nocturnal paresthesia

Morning numbness

Symptoms relieved by shaking the hand

Grip weakness, fatigue (thenar intrinsics)

Carpal Tunnel Syndrome - Physical Findings

Sensory tests (Semmes-Weinstein, 2 PD)

Provocative tests (Phalen's, Tinel's, Durkan's)

Motor tests (FPB strength, thenar atrophy)

EMG/NCS is Confirmatory

Not necessary for diagnosis

May quantify disease severity

Serves as a preoperative baseline

In early CTS or dynamic CTS, may be normal

If demyelination, increased latencies, decreased conduction velocities

In late CTS, EMG shows fibrillations, abn MUPs

Methods of Carpal Tunnel Release

Standard open

Mini-open

Percutaneous, ultrasound guided

Endoscopic (one or two incision)

Not Required in Carpal Tunnel Release

Release Guyon's canal

Step-cut lengthening TCL

Flexor tenosynovectomy

External epineurotomy

Internal neurolysis

Preserve subcutaneous nerves

Peripheral Nerve Injuries & Repair

Mechanism of Injury

Stretch - e.g., neurapraxia of bp (stinger)

- · 8% elongation decreases microcirculation
- 15% elongation disrupts axons

Compression or crush

- 30 mmHq > paresthesia
- 60 mmHg > conduction block

Laceration initiates nerve regeneration

Wallerian Degeneration

Axoplasm, myelin are degraded distally Schwann cells proliferate, line up on BM Proximal budding (1 month delay, 1 mm/day) Neurotrophic factors attract sprouting axons

Factors Affecting Prognosis

Age - single most important factor Level of injury - distal is better prognosis Type of transection - sharp is better Repair delay - worse prognosis (limit = 18 mo)

Neuron Morphology

Neuron is functional unit Cell body contains nucleus

- Motor (anterior horn of cord)
- · Sensory (dorsal root ganglion)

Axon propagates action potentials (APs) Dendrites receive adjacent nerve input

Peripheral Nerve Anatomy - Terminology

Epineurium - surrounds group of fascicles

Perineurium - covers individual fascicles, primary source tensile strength, elasticity

Endoneurium - covers axons, participates in formation of Schwann cell tube Myelin - made by Schwann cells, insulates axons, increases conduction velocity

Seddon Classification

Neurapraxia - focal nerve compression and demyelination, reversible conduction block Axonotmesis - axon & myelin disruption, conduction block, Wallerian degeneration Neurotmesis - complete nerve disruption, no recovery w/o repair

Nerve Conduction Study (NCS) - Focal Compression / Demyelination

Increased latencies

- Distal sensory latency > 3.2 ms (for CTS)
- Distal motor latency > 4.3 ms (for CTS)

Decreased conduction velocity < 52 m/sec

Decreased amplitude

- Sensory nerve action potential (SNAP)
- Motor action potential (MAP)

Limitations of NCS

Evaluates only large myelinated axons Unmyelinated axons are first affected May have normal latency w/disease Study quality is examiner dependent

Electromyograhy (EMG)

Evaluates muscle activity

- · Spontaneous activity
- Voluntary activity

Muscle denervation

- Fibrillations
- · Positive sharp waves

Fasiculations

Nerve Grafting

Autologous graft indicated for gaps > 3 cm, gold standard for defects > 5 cm Collagen conduit indicated for defects < 2 cm, outcomes equal to autologous for gaps < 5 mm Allograft for defects up to 5 cm

Top Ten Test Taking Hints

- 1. Pace yourself
- 2. Skip difficult questions
- 3. Record answers as you go
- 4. Answer on basis of first impression unless you have misread the question
- 5. Correct responses have "may" or "can"
- 6. Incorrect responses have double negatives, generalizations ("always" or "never")
- 7. Eliminate the wrong answers
- 8. Guess most conservative treatment or the longest answer
- 9. Choose the completely correct answer
- 10. Rest before the test!